
Test Code
Tangles

Interdependent Test Cases
Test cases can be written in a way that they rely on
other cases. Either by intention due to a very
cumbersome setup, or accidentally when you assume

the result of a series of test is actually the result of the arrange
phase.	
	
This is especially harmful as changing or removing one test case
can make multiple other cases fail that dependent on it.	
	
Untangle with Test Data Manger

Long Arrange
When dealing with big data objects, we need to
construct these objects to arrange our tests.	
	

Quite often only few of the set properties are actually relevant for
the test at hand. The other set properties are actually just set to
satisfy the constructor of the class and often use Magic Values.	
	
Untangle with Arrange Helper Method, Test Data Builder

var gilly = new Unicorn(
 randomUUID(),
 "Gilly",
 ManeColor.RED,
 111,
 11,
 today().minusYears(62) �� only relevant line!
);

assertThat(gilly.age()).isEqualTo(62);

Long Assert
Verifying big data objects can lead to a lot of simple
assertions, which make the intention of the test hard to
understand.	

	
Untangle with Assert Helper Method, Test Data Builder
(asserting the result is equal to a built expected object)

var response = restTemplate
 .getForEntity(url, String.class);

var data = objectMapper
 .readTree(response.getBody());

assertThat(data.get("id").asText())
 .isEqualTo("4711");
assertThat(data.get("name").asText())
 .isEqualTo("Grace");
// …
assertThat(data.get("dateOfBirth").asText())
 .isEqualTo("1982-02-19");

Lying NamestestFoo

bar()
Test case names are not executable code. Hence, their
correctness is not checked automatically like the actual
test code.	

	
They often help though, to understand the general intention of a
test case, and they are usually the data we get from test reports.	
	
Often test case names are copy-pasted from other tests, and often
we fail adjust them when the content of the test case changes.	
	
Untangle with Expressive & Consistent, Test Case Names

@Test
void postInvalidUnicornYieldsA500Response() {
 var response = restTemplate
 .postForEntity(url, String.class);

 assertThat(response.getStatusCode())
 .isEqualTo(HttpStatusCode.valueOf(400));
 assertThat(response
 .getHeaders()
 .containsKey("Location"))
 .isFalse();
 assertThat(response.getBody())
 .contains("invalid unicorn");
}

Multiple Acts
When tests have multiple interactions with the unit under
test, they usually have a lot of possible reasons to fail.
This makes a failing test an ambiguous signal.	

	
Untangle with Split by Assumptions, Test Data Manager	
	
var postResponse = restTemplate
 .postForEntity(url, unicorn, String.class);

assertThat(response.getStatusCode())
 .isEqualTo(HttpStatusCode.valueOf(201));

var location = postResponse
 .getHeaders().get("Location")).get(0);
var getResponse = restTemplate
 .getForEntity(location, String.class);

assertThat(getResponse.getStatusCode())
 .isEqualTo(HttpStatusCode.valueOf(200));Hidden Arrange

Sometimes our tests rely on a non-obvious setup.	
	
	

For example: The database implicitly gets set up with a test data
set. The data is then used in the tests' asserts, but its source is not
visible from the test itself.	
	
This is problematic because it may hide failure causes.	
	
Untangle with Arrange Helper Method, Test Data Builder, Test
Data Manager

Duplicate Arrange/
Assert Code
Creating and setting up test objects is duplicated in
multiple tests.	

	
Untangle with Test Data Builder, Test Data Manager

Magic Values
c��42

a="abc"

A magic value is basically some literal value appearing
somewhere in the code without any hint why it was
chosen or what it means.	

	
Untangle with Arrange Helper Method, Explicit Constants, Test
Data Builder

var gilly = new Unicorn(
 "351d0356-6d5e-47d5-adbb-4909058fdf2f", �� ��
 "Gilly", �� I guess we use this all the time?
 ManeColor.RED, �� Why not BLUE?
 154, �� Is this important?
 12, �� Why 12?
 today().minusYears(62).plusDays(1)
);

assertThat(gilly.age())
 .isEqualTo(61); �� Not 62?!?

Test code is code.
What's considered bad in production code, is bad in test code.

Its intention should be immediately obvious.
Its functionality shouldn't be obscured.

Its results should be meaningful.
Its failure causes should be easy to find.

Long/Technical Act
Some tests like API or GUI tests require to use some
kind of client, whose technical details can bloat the act
part of tests. This causes code duplication and obscure

the unit under test. 	
	
Untangle with Act Helper Method

var response = restTemplate.exchange(
 post(url)
 .header("Content-Type", "application/json")
 .body(larryJson), List.class);

Untangles

Arrange Act Assertarrange
act
assert

Tests should always have three parts (at most):	
	
1. Arrange (or given) sets everything up for the test.	

The code should be concise and focus on what makes the test
case different from others.	
	
2. Act (or when) contains the actual test.	
This part should be one line/one interaction with the unit under test.
Otherwise, the number of potential outcomes quickly become
confusing.	
	
3. Assert (or then) checks the effects of act.	
Ideally this only checks one aspect of the result, so the test can
only fail for one obvious reason.	
	
Note that arrange is optional. Act and assert can be combined in
one line of code.

Expressive & Consistent
Test Case Names

a

a_error

Choose a naming scheme that makes test case names
clear, expressive, concise, unambiguous, and easily

understandable.	
	
Useful components of a naming scheme are <unitUnderTest>,
<stateUnderTest>, and <expectedBehavior>.	
	
Any naming scheme is better than no naming scheme at all!	

class <ClassUnderTest>Test {
 void <methodUnderTest>_<stateUnderTest>() {
 … �� see code for <expectedBehavior>
 }
}

Test Data Builder
Build

er

Create a builder class that allows to create whatever
object is required for the test. That builder class should
contain or use random data generators or constants to

fill all the fields that are deemed irrelevant for the test at hand.	

var unicorn = new UnicornTestDataBuilder()
 .dateOfBirth(today.minusYears(62))
 .build();

assertThat(unicorn.age())
 .isEqualTo(62);

TstDa
ta

 Mngr

Test Data Manager
A test data manager directly interacts with the database
to inject wanted test data:

It can also be used to clean up and hence allows to test no data
scenarios.

testDataManager.withUnicorn(unicorn);

var respose = restTemplate
 .getForEnitiy(url, String.class);

assertThat(response.getBody())
 .contains(unicorn.name());

Explicitly named test data constants can help to
understand the test code a lot. Choose good names
(e.g. prefix with "SOME" to express that the actual value

doesn't matter).

Explicit ConstantsVALID_ID=
 "abc"

RndDa
ta

 Gen Random Data GeneratorsrandId

Use random data generators for test data.	
	
This may be necessary to resolve dependencies

between tests (e.g. to ensure uniqueness of IDs).	
	
It can also technically underline that the concrete value should not
matter for the test.

var someUnicorn =
 new Unicorn(
 randomUUID(), �� needs to be unique
 SOME_VALID_NAME, �� value doesn't matter
 randomManeColor(),
 SOME_VALID_HORN_LENGTH,
 randomValidHornDiameter(),
 today.minusYears(62)); �� this matters

Assert Helper Methodcheck()
Group long asserts that check one logical thing in
verification methods. This reduces the amount of code in
the test itself, and the method name makes the intention

more obvious.

assertThat(jsonContainsUnicorn(
 response.body(), unicorn)).isTrue();

AssertJ also allows to use your own Conditions and Custom
Assertions, which can make the verification code even more
elegant.

UnicornAssert.assertThat(unicorn))
 .isValid()
 .isOlderThan(62);

Arrange Helper Methodsetup()setup()

Create test setup helper methods to avoid duplication of
test object setup in a lot of tests.

private Unicorn createUnicornBornAt(
 LocalDate dateOfBirth) {
 return new Unicorn(
 randomUUID(), SOME_NAME, SOME_MANE_COLOR,
 SOME_HORN_LENGTH, SOME_HORN_DIAMETER,
 dateOfBirth);
}

@Test
void age() {
 var gilly = createUnicornBornAt(
 today.minusYears(62));

 assertThat(gilly.age())
 .isEqualTo(62);
}

Split with Assumptions
If you find Multiple Acts in a test case, you might want
to split it with Assumptions. Copy the test, remove the
second act from the original, and replace the copy's

assertion code with an assumption.

var postResponse = restTemplate
 .postForEntity(url, unicorn, String.class);
�� ↓ this is asserted somewhere else
assumeThat(postResponse.getStatusCode())
 .isEqualTo(HttpStatusCode.valueOf(201));
var location = postResponse
 .getHeaders().get("Location")).get(0);

var getResponse = restTemplate
 .getForEntity(location, String.class);

assertThat(getResponse.getStatusCode())
 .isEqualTo(HttpStatusCode.valueOf(200));

assume

Act Helper Methodsetup()setup()

Use act helper methods to avoid code duplication and
make the unit under test more obvious.

private Unicorn postUnicorn(String body) {
 return restTemplate.exchange(post(url)
 .header("Content-Type", "application/json")
 .body(larryJson), List.class);
}

@Test
void post_unicorn() {
 var gillyJson = "…";

 var response = postUnicorn(gillyJson);

 assertThat(getResponse.getStatusCode())
 .isEqualTo(HttpStatusCode.valueOf(200));
}

